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42.1 Abstract 
 
In the last couple of years, cloud services became more popular. On the one hand, service 
complexity increased and on the other requirements related with the Quality of Service and 
Service Level Agreement negotiations moved to synergic cloud-based architectures. The 
number of the data centers increased and also a federated architecture of data centers were 
introduced. However, one of the major effects was the increase of the consumed electricity 
from Data Centers (DCs) which had negative impact in energy footprint and the 
environmental conditions. In this paper, we present an optimization procedure, focusing on 
minimization of the energy consumption of the data centers, based on grouping genetic 
algorithms and we provide experimental results from a real DC.  
 
 

42.2 Introduction  
 
The ever increasing demand for computing capacity and the resulting burgeoning of large 
scale Data Centers (DCs), which constitute huge energy sinks, have a direct impact on the 
ICT related energy consumption. This huge energy consumption poses a great challenge for 
the energy sector and the problem is further intensified by the volatility of the energy markets 
and the inability of Smart Grids to follow the electricity demand-response model, which 
impedes the seamless integration of large scale DCs to the energy network. Thus, Smart 
Grid operators need to address on the one hand the immense energy consumption of DCs 
and on the other hand the erratic operation of Smart Grids, caused by the inability to follow 
the demand-response paradigm.  
To elaborate on the first of the two problems, the increase of DCs, which is accompanied by 
huge electricity consumption and sub-optimal energy management, directly affects their 
energy footprint and the environmental conditions. It is well known that the average server 
utilization in DCs is low, often below 30% of the maximum server load [1], [2] and only 10% 
in case of facilities that provide interactive services [3]. This low utilization is primarily due to 
two reasons: (i) the provisioning of a DC is done based on the expected peak load, rather 
than the average load. For interactive services, peak utilization often exceeds the average 
utilization by more than a factor of three [3]; and (ii) in order to provide redundancy in the 
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event of failure. DC operators deploy more systems than are actually needed. The over-
design and over-provisioning of DCs and the increased number of low utilized servers, have 
significantly increased the waste of energy. In the last couple of years, the electricity 
consumed by DCs has doubled, representing an aggregate annual growth rate of 16.7% per 
year worldwide [4]. Approximately 80% of this growth is caused by the increased electricity 
used by servers, 10% by the growth in electricity used for DC communications and around 
10% by the growth in electricity by storage equipment.  
Besides electricity consumed for supporting the computational operation of the servers, a 
huge amount of energy is also consumed for the cooling of DC servers. To lower this waste 
of energy, DC containment strategies (both hot aisle and cold aisle) are widely regarded as 
the starting point for energy-efficiency best practices. Moreover, the so called “Green DCs” 
aim to use a number of green electricity sources (e.g. photovoltaic cells, geothermal power, 
hydroelectric energy, etc.), for normal operations and cooling purposes. The results are, in 
many cases, impressive, but they still represent a minority of the deployed DCs and even in 
those cases the intermittent nature of green electricity sources make the need for integration 
of green energy sources to the energy network and for stable Smart Grid operation more 
actual than ever.  
As already highlighted above, this additional problem, that is the instability of the Smart Grids 
and the difficulty to follow the electricity demand-response model constitutes a major 
problem in the energy sector. In particular, as Europe shifts away from fossil fuels, electricity 
is becoming an even more important energy vector and the seamless integration of 
renewable energy sources to the energy network becomes imperative. More than 29 
European countries have targets for a share of renewable energy in the range of 10-33% 
until 2020. Achieving these goals is vital for the EU internal energy market, as it will lower the 
dependency on importing oil and it will help towards a more sustainable growth. The 
implementation of more intelligent and active transmission, distribution and supply systems 
in the form of Smart Grids is central to the success of such a development. Thus, Smart 
Grids are very high on the agenda of the European energy and ICT sector. However, the 
problem is that Smart Grids have difficulty in following the electricity demand-response 
model. The introduction of Smart City technology is also being developed as a mechanism to 
enable intelligence in buildings, city blocks and regions. As a result, we need solutions, 
which can support the features of the Smart Grid, coupled with the capabilities of Smart 
Cities, in order to carefully manage the energy profile of DCs, especially under periods of 
increased demand.  
Recent literature suggests that the problem of optimizing and coordinating the energy 
consumption of federated Data Centers and its alignment with the Smart Grid stabilization 
needs, is actively researched. In [5], a survey on the existing techniques utilizing 
geographical load balancing for optimizing the energy consumption of Data Centers in the 
context of a Smart Grid is presented. The optimization may have different targets, including 
absolute energy consumption with respect to QoS guarantees [6], cost [7] and carbon 
footprint [8], the techniques employed varying among Mixed Integer Programming, Dynamic 
Programming, heuristics through Genetic Algorithms etc [5]. Load balancing of Data Centers 
in the context of the Smart Grid are also investigated in [9], where the authors present a two-
stage framework for modelling the relevant interactions and formulate a cost-minimization 
problem based on linear programming. Similarly, the authors of [10] present a cooperation 
scheme between Smart Grids and Data Centers, with the aim to maximize the share of 
renewables in the energy mix used for Data Center operation. The problem of optimal load 
(VM) allocation in federated Data Centers is also tackled in [11], where a greedy heuristic is 
presented with a view towards minimizing the carbon dioxide emissions due to Data Center 



operation. Finally, in [12], an in-depth survey of existing algorithms and techniques for 
orchestrated energy management and energy sustainability in federated clouds is presented.  
In the direction of tackling the above problems and significantly contributing toward 
improving the energy efficiency of DCs and stabilizing Smart Grids, the present paper 
introduces a holistic approach interconnecting networks of DCs and Smart Grids, addressing 
both problems in a complementary way. Specifically, in the context of smart city and Smart 
Grid integration, a network of synergetic DCs can adjust its operation shifting load to regions 
of renewable energy surplus, playing a key role toward Smart Grid stabilization and “Green” 
operation of modern DCs. Moreover, the proposed approach can be seamlessly integrated 
to legacy DC equipment discounting any capital expenditure employing solely the software 
defined networking (SDN) and software defined infrastructures (SDI) of legacy DC 
equipment. The paper is organized as follows Section 2 introduces the predictive 
optimization techniques, in order to implement the proposed approach. Section 3 presents 
the preliminary results obtained by an in-house micro DC, after the employment of the 
predictive optimization techniques described in Section 2. Finally, Section 4 concludes the 
paper and presents relevant perspectives. 
 
 

42.3 Predictive Optimization  
 
The employment of load prediction methods for the efficient prediction of the standalone DC 
load, the synergetic DC load and the user load is of paramount importance for the efficient 
optimization of the load allocation to the synergetic DCs. Such methods provide energy 
predictions based on the user habits, the behavior and the workload patterns as well as the 
weather forecast, allowing the devise of predictive energy patterns. Subsequently, based on 
these a priori devised energy patterns the relevant optimization modules can devise relevant 
plans optimizing the VM / load allocation to standalone and synergetic DCs, based on the 
Smart Grid status.  
A number of techniques have been proposed for forecasting aggregated and correlated 
energy consumption inspired by machine learning, and have passed from linear regression 
and autoregressive moving average models [13] to neural networks [14] and boosting 
approaches [15] and finally to the Support Vector Machine For Regression (SVR) that is a 
state of the art forecasting method [16-18] . The SVR uses the same principles as the 
Support Vector Machine (SVM) for classification, but as output instead of a real number, 
which has infinite possibilities, it returns a margin of tolerance, to minimize error.  
The SVR method is employed for energy consumption forecasting, as it combines several 
desirable properties compared with other existing techniques: it has a good behavior even if 
the ratio between the number of variables and the number of observations becomes very 
unfavorable, with highly correlated predictors, it makes possible to construct a nonlinear 
model without explicitly having to produce new descriptors (the famous "kernel trick"), while 
a deeply study of the characteristics of the method allows to make comparison with 
penalized regression such as ridge regression [19], whereas a number of pre-calibrated SVR 
toolkits can be found online [20], facilitating the easier fine-tuning of the SVR.  
Having fine-tuned the SVR parameters for the load prediction at DC and user level an 
appropriate optimization algorithm must be selected in order to efficiently employ the SDI 
(through cloud managers such as OpenStack [21], OpenNebula [22] and Eucalyptus [23]) in 
order to minimize the reserved physical resources and the implicit operating cost. In practice, 
VMs reserve virtual shared CPU and shared storage, whereas the only physical resource 
reserved in a stringent way is the server physical memory. Thus, the problem of optimal VM 



allocation across the network of synergetic DCs is reduced to that of allocating the aggregate 
server memory to VMs, based on their forecasted load and availability.  
The above problem can be reduced to a “bin packing” problem [24] and has been formally 
formulated by the authors in [25]. In particular, “the problem of VM allocation can be 
considered as a “bin packing” problem, where given a finite set U={u1,u2,…,un} of 
“items”(i.e. VMs) and a rational “size” (i.e. memory) s(u) for each item u ε U a partition of U 
into disjoint subsets U1,U2,…,Uk must be found such that the sum of the sizes of the items 
in each subset Ui is no more than a respective “bin size”(i.e. server memory) Si and such 
that k is as small as possible. Thus, VMs of memory s need to be allotted to servers of 
memory S, while reserving the minimum number of servers, whereas a memory granularity 
of 512MB can be assumed which is a typical value encountered in practice.”  
The above problem constitutes an NP-hard problem [24], however a number of 
approximation and heuristic techniques can be employed to provide solutions to the problem. 
The Best Fit Decreasing Algorithm (BFD) [24] constitutes one of the best approximation 
algorithms for the “bin packing” problem and it can be employed to achieve a consolidated 
VM allocation. As stressed by the authors in [25] in the direction of employing the BFD “the 
DC servers are indexed based on their energy-efficiency, with energy-efficient servers being 
assigned a lower index. Subsequently, “items” (i.e. VMs) are placed into “bins”(i.e. servers) 
in order of increasing index. As a result, energy-efficient servers are assigned a higher 
priority and for instance servers of a Green Room are reserved first, or servers of the same 
DC segment are reserved prior to remote DC servers in order to allow remote DC servers to 
hibernate, providing substantial energy savings. Next, “items” in U are sorted by size and re-
indexed so that s(u1) ≥ s(u2) ≥ ··· ≥ s(un). “Items” are then placed in order of increasing 
index, first into the occupied “bins” of lower available capacity and then, in case they do not 
fit into the occupied “bins”, or in case of a tie, “items” are placed in order of increasing index 
into the lower indexed “bin” they fit.”  
Thus, the documented success of the BFD approximation solution can be exploited to 
initialize the search of an appropriate heuristic approach. Specifically, the above solution is 
used as an initial seed to initialize the search of a Genetic Algorithm (GA) approach [26]. The 
GA constitutes one of the most successful heuristics [26], however, a number of factors 
hinder the convergence of GA when the latter is applied to grouping problems such as the 
“bin packing” problem in hand. In particular, grouping problems – aiming either to find a good 
partition of a set or better yet to group together the members of a set - challenge the 
cornerstone of the GA, namely the principal of minimal redundancy of each solution, as 
different encodings and different permutations of the groups may refer to the same solution. 
Also, solution clustering into groups hinders the passing of useful (i.e. standalone) 
information to the next generation through the crossover and mutation operators of the GAs 
[27-29].  
In this course, the Grouping Genetic Algorithms (GGA) have been proposed [27] allowing the 
encoding of grouping problems like the one in hand, by using groups or in our case “bins” as 
the GA building blocks on which GA operators are applied. One could envisage a GGA as a 
simple GA where each gene of a GAs’ chromosome corresponds to a tuple of elements 
corresponding to the “items” of each “bin”, whereas the “bins” are the building blocks evolved 
by the employment of the GAs. This approach alters all GA operators significantly, however 
this approach outperforms the standalone GA substantially when applied to grouping 
problems.  
The employment of the GGA, initialized by the BFD, for the optimal VM allocation, allows for 
the consolidated allocation of VMs at an intra-DC level as well as an inter-DC level, 
whenever a VM consolidation is imposed by the Smart Grid operation. Thus, the distributed 
application of the above optimization algorithm on DC sites, when that is deemed necessary 



based on the SVR load predictions, could yield significant energy savings as well as reliable 
Smart Grid operation.  
In order to validate the efficiency of the proposed approach and the feasibility and 
applicability of the proposed approach employing solely the SDI, the preliminary results of 
the optimized VM allocation are tested on an in-house micro DC and the obtained data 
corroborating the substantial benefits arising from the proposed approach are presented 
hereafter. 
 
 

42.4 Experimental Results  
 
In the process of developing and fine-tuning the prediction engine and optimization module, 
a number of attested scenarios were used as benchmark to quantify the convergence of the 
developed optimization algorithms and the accuracy of the developed prediction models. 
These optimized test scenarios to which the predictive optimization converged to, were then 
implemented based on the SDI of a small scale testbed, as a proof of concept, employing 
OpenStack for the actuation of these scenarios. The testbed consists of 4 low consumption 
blade servers (less than 50W of energy consumption at average load, simultaneously 
underclocking idle cores) which run artificial loads to emulate the operation of a commercial 
DC.  
 

 
Figure 1: Prediction Engine performance 

 
The performance of the implemented prediction engine is depicted in Figure 1, where the 
load (power) prediction is plotted against the real power demand values. The training set of 
the prediction engine spanned two months of data. The Root Mean Squared Error between 
the actual power demand values and the predicted ones is 74.3 which is considered 
acceptable for our value range, granted the limited training set volume; further training of the 
prediction engine is required in order to acquire more accurate results.  

 



 
Figure 2: Test optimization scenario result 

 
 
In the same context, Figure 2 presents the outcome of the load optimization on the 
aforementioned test setup. Specifically, under random load and granted relevant predictions 
from the prediction engine, the optimization component was able to reorganize the existing 
load in such a way that the energy consumption dropped by approximately 15%, exhibiting 
that through proper management, the energy consumption of DCs can be significantly 
lowered, to help towards assisting the operation of Smart Grids. Moreover, when considering 
the ability to relocate loads to geographically distant DCs when intra-DC optimization is 
unable to accommodate the load inside the DC boundaries, the coordination of DC loads 
with the Smart Grid demand response plans, is expected to contribute substantially to the 
achievement of Smart Grid stability.  
 
 

42.5 Conclusions  
 
In this paper, a framework for achieving energy optimization in federated DCs has been 
presented, employing continuous DC resources and network monitoring and scalar 
optimization architectures operating at local and federated levels. In the course of minimizing 
the energy consumption at local DC level, we employ load optimization through load re-
allocation, coupled with near future load predictions, implemented with the help of support 
vector regression techniques. The results of the prediction and optimization processes are 
presented and briefly discussed, indicating significant power savings may be achieved by 
employing the proposed architecture.  
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