47 Shipping Telemetry Systems

Stavroula Chela, Dpt. of Automations, Piraeus University of Applied Science Piraeus, Greece, E-mail: <u>vchela@gmail.com</u>

Dr. Christos Drosos, Dpt. of Automations, Piraeus University of Applied Science Piraeus, Greece, E-mail: <u>drososx@puas.gr</u>

Dr. George Stamoulis, Professor, Dpt. Of Informatics, University of Thessaly, Lamia, Greece E-mail: georges@inf.uth.gr

Dr. Konstantinos Kalovrektis, Dpt. Of Informatics, University of Thessaly, Lamia, Greece E-mail: <u>kkalovr@uth.gr</u>

47.1 Abstract

The aim of the Thesis to investigate the Shipping Telemetry Systems (SCADA type) with the help of information systems evaluation models (TAM, IS Success) to draw useful conclusions on the satisfaction of their users and the success of the systems. The research methodology follows the Mixed Method Research (MMR), uses a combination with the quantitative method by using questionnaires and qualitative method by using interviews. The sample numbers 47 users (quantitative research) and 3 manufacturers (qualitative research). The research findings found that: It seems marine telemetry systems are successful in their application area according to the users and the companies-manufacturers and The overall evaluation of the systems is high from the stakeholders.

47.2 Key-Words

Shipping Telemetry Systems, SCADA, TAM, IS success, evaluation, satisfaction

47.3 Introduction

The sipping telemetry system (STS) is an SCADA system in maritime sector. This paper has proposed and used a framework (research model) STS evaluation. It is a combination two models: TAM & IS SUCCESS. It examines various shipping telemetry system in the light of an integrated evaluation framework that includes the user satisfaction and acceptance of technology. The findings provided to fill the conceptual gap between user satisfaction and technology acceptance of information system for STS.

47.4 Background

The supervisory control and data acquisition system (SCADA) application is a branch of Industrial Information and referred to the combination of telemetry and data acquisition (Figure 1). SCADA systems, uses the programmable logic controllers (PLC) for monitoring all those critical parameters of an industrial process (e.g. pressure, temperature, humidity, etc.) Required for supervisory control, real-time [1], [2], [5], [6], [7], [8], [9].

Telemetry associated with SCADA systems is the transmission technique and data reception with an agent means. These data are measured and transferred wired or wirelessly, usually from multiple points. The yield of a separate address to every point (addressing) is part of the SCADA system. Data acquisition is an access method, handling and data collection and collaborating with the SCADA telemetry system for transferring the data [2], [3], [9].

Figure 1.SCADA System

In particular, the shipping use SCADA systems to collect measurements and visual inspection started the implementation in propulsion engines (Figure 2). The target is the reduction of human resources and to improve the safety of personnel and equipment. Today, with the development of new technologies (IT, robotics, mechatronics, internet), telemetry and supervisory intelligence and control systems are expanding continuously, increasing the level of integration of existing ship systems [10].

Figure 2. The propulsion engine control with ECS-UNI 595/M system (pressure, temperature, fuel supply)

Below are images of the most important SCADA systems used in the shipping and transport industry, especially in the Greek market:

Figure 3. K-Chief 500 system topology

Figure 4. SSAS-Pro system topology

47.5 Methodology

47.5.1 <u>Research model</u>

This Research follows the mixed methodology (Mixed Methods Research) which comprises the following parts:

(a) Qualitative research

- Interviews with experts from companies supplying shipping telemetry systems
- Pilot study

(b) Quantitative research

- Questionnaires shipping telemetry system users
- Pilot survey
- Main survey

The structure of the research model of this study (a combination of IS evaluation models: TAM & IS success)[11],[12],[13],[14] is shown in the following figure:

Figure 5. Research model

47.5.2 Research Objectives

The Research Objectives are:

- RO1: To investigate the acceptance of technology shipping telemetry systems by their users.
- RO2: To investigate the satisfaction of shipping telemetry system users.
- *RO3*: To investigate the overall assessment of shipping telemetry systems.

47.5.3 <u>Hypothesis</u>

The Hypothesis (Quantitative research) of Research Model (Fig.6):

H1.0 The intended use of shipping telemetry systems is not affected by the usefulness H1.1 The intended use of shipping telemetry systems is affected by the usefulness

H2.0 The intended use of shipping telemetry systems is not affected by the perceived Ease of Use

H2.1 The intended use of shipping telemetry systems is affected by the perceived Ease of Use

H3.0 The intended use of shipping telemetry systems is not affected by the Experience *H3.1* The intended use of shipping telemetry systems is affected by the Experience

H4.0 The intended use of shipping telemetry systems is not affected by the Trust *H4.1* The intended use of shipping telemetry systems is affected by the Trust

H5.0 The system quality is not affected by the information quality

H5.1 The system quality is affected by the information quality

H6.0 Overall satisfaction of the shipping telemetry system is not influenced by the intended use

H6.1 Overall satisfaction of the shipping telemetry system is not influenced by the intended use

H7.0 Overall satisfaction of the shipping telemetry system is not influenced by the system quality

H7.1 Overall satisfaction of the shipping telemetry system is not influenced by the system quality

H8.0 Overall satisfaction of the shipping telemetry system is not influenced by the information quality

H8.1 Overall satisfaction of the shipping telemetry system is not influenced by the information quality

Figure 6. Hypothesis framework

47.5.4 Research Questions

The Research questions (Qualitative research) of Research Model (Fig.7):

- Q1: What is the effect of TAM model factors regarding the acceptability of shipping telemetry systems by companies-manufacturers point of view?
- Q2: What is the effect of the IS model success factors regarding the degree of success of shipping telemetry systems by companies-manufacturers point of view?
- Q3: What is your overall assessment of shipping telemetry systems by companiesmanufacturers point of view?

Figure 7. Research Question framework

47.5.5 Triangulation

The Research questions (Qualitative research) of Research Model:

The triangulation is a combination of data sources (users, companies-manufacturers) and linking research hypotheses - research questions (Fig,8):

RO1:Set H₁: {H1.0/1.1,H2.0/2.1, H3.0/3.1, H4.0/4.1} AND EE 1.1 Ro22:Set H₂: {H5.0/5.1} AND EE 2.1 RO3:Set H₃: {H6.0/6.1, H7.0/7.1, H8.0/8.1} AND EE 3.1

Figure 8. Triangulation procedure

47.5.6 <u>Sample</u>

The sample of this research consisted of 47 users (Quantitative research) and 3 companiesmanufacturers (Qualitative research).

47.5.7 <u>Tools</u>

This research contains:

- (a) Quantitative research: we use a questionnaire (31 questions and comments).
- (b) Qualitative research: we use a hemi-structure interview (21 questions and comments).

47.5.8 Data Analysis

The quantitative analysis of this research includes the following techniques:

- Pilot study
- Analysis of reliability validity
- Demographic sample analysis (using techniques of descriptive statistics)
- Hypothesis testing (regularity audit, using statistical parametric test or not)
- Export findings

Qualitative analysis of this research includes the following techniques:

- Pilot study
- Analysis of reliability validity
- Codification participants
- Interpretation-text analysis (using
- Outcome of conclusions

The triangulation of this research includes:

- Findings of research (qualitative &

quantitative) connections

encoding technique)

47.6 Results

47.6.1 <u>Reliability and Validation</u>

This research has the following quality reliability and validation criteria due to small sample: (a) Reliability

- Professional experience of researcher (>10 years)
- confirmatory reliability
- triangulation
- (b) Validation
 - Face validation (pilot research)
 - Models validation (TAM & IS success)
 - Transferability (inductive approach: RO to Hypothesis/research question)
 - Dependability (organized research design)

47.6.2 **Quantitative Analysis**

The profile of the sample users telemetry systems is:

Table 1. Users Profile

Types of Shipping Telemetry System	Users of sample (N)
Kongsberg K-Chief 500	24
Kongsberg K-Chief 2000	4
Siemens Win CC	21
Samsung SSAS-Pro	12
Hansin	4
ABB	4

The evaluation of shipping telemetry systems users gather high scores (> 6) with the highest Hansin system and lower the Kongsberg K-Chief 2000 system.

The results of Hypothesis analysis are (Tab.2):

- using *Kolmogorov-Smirnov (K-S)* & *Shapiro-Wilk (S-W)* Test (research variables): have no normal distribution (Sig <0,05), and
- using non-parametric tests (Kruskall-Wallis, Mann-Whitney)

Hypothesis	Findings
H1.0/1.1	Sufficient effect the utility to use intention
H2.0/2.1	
H3.0/3.1	Moderate effect on ease of use intended use
H4.0/4.1	Moderate impact the user experience intended use
	High impact confidence in the intention to use
H5.0/5.1	The information quality affects the mediocre quality system
H6.0/6.1	Moderate effect of using prosthesis in overall satisfaction
H7.0/7.1	High impact of quality systems in overall satisfaction
H8.0/8.1	Moderate effect of quality information to overall satisfaction

Table 2. Hypothesis Results

47.6.3 **Qualitative Analysis**

The qualitative analysis followed the coding methodology (open coding):

Table 3	. Coding	Results
---------	----------	---------

Ερωτήματα	Αποτελέσματα
Q1	High degree of impact the usefulness,
	ease of use, trust
Q2	High quality information and systems
	High overall satisfaction (High
Q3	satisfaction individual users of products
	and companies)

47.6.4 <u>Triangulation Process</u>

The following table shows the correlation quantitative and qualitative research findings by research objective:

Table 4. Triangulation Results		
Research	Correlations	
Objectives		
Research Objective	Trust & utility systems due	
1	to the reliability, security	
Acceptance	and good training of	
	operators	
Research Objective	Technical specifications	
2	provide fast, accurate and	
Success	reliable information	
Research Objective	High overall evaluation	
3	(and sub-systems) agree	
Overall	users and companies	
satisfaction		

47.7 Conclusion

The research finding showed that:

- All factors of TAM model affect the intended use. The biggest impact has the confidence (external factor), followed by the utility.
- The IS Success factors have little effect according to users, but according to companies-manufacturers there is high quality of systems and information.
- The overall evaluation of the systems is high for users and companies-• manufacturers.

The future relative research would be useful for the concerned developers-companies to design better shipping telemetry systems.

47.8 References:

- [1] R.-E. King, Information control, Athens: Papasotiriou Edition, 1994.
- [2] R.-E. King, Industrial Informatics, Salonica: Tziolas Edition, 2014.
- [3] A. Veloni and St. Alatsathianos, Industrial Informatics, self publishing, 2014.
- [4] F. Kouboulis, Industrial control, Athens:New Technologies edition, 1999.
- [5] St. Manesis, Industrial Network PLC, Patra: Patra University Press, 2007.
- St. Manesis, Industrial Automation System, Patra: Patra University Press, 2006. [6]
- R.-E. King, Measurements system, Salonica: Tziola Edition, 2001. [7]
- [8] R.-E. King, AI in control, Athens: Traulos Edition, 1998.
- [9] M.J. Shaw, Information Based Manufacturing, USA: Kluwer Academic Publishers, 2001.
- [10] Chr. Lykos, Shipping Telemetry System, Thesis, ΣΗΜΜΥ, ΕΜΠ, 2007.
- [11] Melone, N. 1990. A theoretical assessment of the user-satisfaction construct in information systems research. Management Sci. 36(1) 76-91.
- [12] Seddon, P. 1997. A respecification and extension of the DeLone and McLean model of IS success. Inform. Systems Res. 8(3) 240-253.
- [13] Davis, F. D., R. P. Bagozzi, P. R. Warshaw. 1989. User acceptance of computer technology: A comparison of two theoretical models. Management Sci. 35(8) 982-1003.
- [14] Davis, Fred D. (1993). User Acceptance of Information Technology: System

- [15] Characteristics, User Perceptions and Behavioral Impacts. *International Journal of Man-Machine Studies*, 38 (3), 475-487.
- [16] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.R Sadeghi. M. Maniatakos, R. Karri (2016). The Cybersecurity Landscape in Industrial Control Systems. *Proceedings of the IEEE*, 104 (5), 1039-1057.